Porting to Vulkan

Lessons Learned

Who am |?

Feral Interactive - Mac/Linux/Mobile games publisher and porter

Alex Smith - Linux Developer, led development of Vulkan support

TSN AMNI/NTANNAZTA D
l‘/v..n } = S

S G00ofVEAR

] B gy
—u_Helf,

Vulkan Releases

e Mad Max
o Originally released using OpenGL in October 2016
o Beta Vulkan patch in March 2017
o Vulkanised 2017 talk “Driving Change: Porting Mad Max to Vulkan”

e Warhammer 40,000: Dawn of War il
o Released in June 2017
o OpenGL by default, Vulkan as experimental option

e F12017
o Released in November 2017
o First Vulkan-exclusive title

e Rise of the Tomb Raider
o Released in April 2018
o Vulkan-exclusive

From Beta to Production

e Firsttwo beta releases weren't production quality

e Gave us a lot of feedback
o Had an email address for users to report problems to us
Driver configuration issues
Hardware-specific issues
Big help in avoiding issues for Vulkan-exclusive releases

o O O

e Many improvements made - will be detailing some of these:
o Memory management
o Descriptor sets
o Threading

Memory Management

e Biggest area which needed improvement to become production quality

e Problem areas:
o Overcommitting VRAM
o Fragmentation

Overcommitting VRAM

e Can happen from users playing with higher graphics settings than they have enough VRAM for
o Don’t want to just crash in this case - it can still be made to perform reasonably well
o We try to allow this, within reason

e Driveris not going to handle it for you!
o When you exhaust available space in a heap, vkAllocateMemory() will fail
o On Linux AMD/NV/Intel at least, may differ on other platforms
o Have to handle this, e.qg. if allocation from a DEVICE_LOCAL heap fails, fall back to a host heap

e Doing it naively can cause performance problems

Overcommitting VRAM

Dawn of War llI ESI
Resolution: 1920 x 1080 - Graphics Preset: High p Il

L 084 X19

056 X19

o
=]
x
o
[-2]
o

046 X19

v Phoronix Test Suite 7.0.0

Source: https://www.phoronix.com/scan.php?page=article&item=dow3-linux-perf&num=4

https://www.phoronix.com/scan.php?page=article&item=dow3-linux-perf&num=4
https://www.phoronix.com/scan.php?page=article&item=dow3-linux-perf&num=4
https://www.phoronix.com/scan.php?page=article&item=dow3-linux-perf&num=4
https://www.phoronix.com/scan.php?page=article&item=dow3-linux-perf&num=4
https://www.phoronix.com/scan.php?page=article&item=dow3-linux-perf&num=4

Overcommitting VRAM

e DoWa3 loads all of its textures and other resources on a loading screen

e Render targets and GPU-writable buffers are allocated after, once it starts rendering

e On 2GB GPUs, higher texture quality settings use up most of VRAM

e Behaviour after a device local allocation failure was always to just fall back to a host heap
o Textures have already filled up the available device space

o Render target allocations fail, so get placed in host heap instead
o Say goodbye to your performance!

Overcommitting VRAM

e Solution: require render targets and GPU-writable buffers to be placed in VRAM

e If we fail to allocate, try to make space:
o Defragment (discussed later)
o Move other resources to the host heap

e Doing this brought DoW3'’s Vulkan performance in line with GL when VRAM-constrained

e Useful to have a way to simulate having less VRAM for testing
o Heap size limit: behaves as though sizes given by VkPhysicalDeviceMemoryProperties are
smaller
o Early failure limit: behaves as though vkAllocateMemory() fails when less is used than the
reported heap size
m Inreal usage this will fail early due to VRAM usage by the OS, other apps, etc.

Fragmentation

e We allocate large device memory pools and manage these internally
o Generally the recommended memory management strategy on Vulkan
o vk(Allocate|Free)Memory() are expensive!

e Over time, these can become fragmented
o Dueto resource streaming, etc.
o Resources end up spread across multiple pools with gaps in between

e Memory usage becomes higher than it needs to be
o More pools are allocated
o Pools can't be freed while they still have any resources in them

- |

' : S eaps I e]
1 b ¥ Heap 8
/

Size: 4896 MiB (4294967296 bytes) [NNENE IFICHERNNGRE EEsE
k‘ " Allocated: 1656 MiB (1737191552 bytes, 48.447143 % of heap)
Used: 1584 MiB (1661171675 bytes, 95.623944 % of allocated)
Flags:
® DEVICE_LOCAL_BIT

¢ : l 4 gs:
/v.[il .‘l ' ” PR oevice_LocaL_BIT
l ~ o) Resource Types:
* Buffer

/e Allocated: 418 MiB (429916168 bytes)
* Used: 482 MiB (422295339 bytes, 96.227378 % of allocated)
‘ » Allocations

LIS vniformeuffer

¢ Allocated: 8 MiB (8388688 bytes)

® Used: 1 MiB (1212656 bytes, 14.455986 % of allocated)

» Allgcations
L e writ r
. ated: 128 MiB (135184384 bytes)

® Used: 128 MiB (1263720872 bytes, 93.481265 % of allocated)
» Allocations
s Image
A0 ¢ Allocated: 768 MiB (885386368 bytes)
. e used: 718 MiB (752894976 bytes, 93.491745 % of allocated)
¥ Allocations
¥ Allocation 8 (128 MiB)

¥ Allocation 1 (128 MiB)
¥ Allocation 2 (128 MiB)
¥ Allocation 3 (128 MiB)
¥ Allocation 4 (128 MiB)

¥ Allocation S (128 Mig)

==
* RenderTarget
* Allocated: 341 MiB (358396832 bytes)
& J v * Used: 341 MiB (358396032 bytes, 1080.908088 % of allocated)
» Allocations
» Type 8
» Type 9

» Type 10

§ SHORTCUT

-> Find a way through the mountain

¥ Heap 8
Size: 4896 MiB (4294967296 bytes) NS INICESRNNGS
Allocated: 1818 MiB (1986788992 bytes, 44,395891 % of heap)
Used: 1465 MiB (1536695699 bytes, 88,598758 % of allocated)
Flags:
* DEVICE_LOCAL_BIT

» Heap 1

Worees
» Type
> Type
> Type
> Type
> Type
» Type
> Type
¥ Type

Heap: 8
Domain: Device
Flags:
* DEVICE_LOCAL_BIT
Resource Types:
* Buffer
* Allocated: 418 MiB (429916168 bytes)
® Used: 482 MiB (422295435 bytes, 98.227393 % of allocated)
» Allocations
* UniformBuffer
* Allocated: & MiB (8388688 bytes)
* Used: @ MiB (781984 bytes, 9.321976 % of allocated)
» Allocations
* WritableBuffer
* Allocated: 128 MiB (135184384 bytes)
* Used: 128 MiB (126372072 bytes, 93.481265 % of allocated)
> Allocations
* Image
* Allocated: 896 MiB (939524096 bytes)
* Used: S65 MiB (593478464 bytes, 63.167136 % of allocated)
¥ Allocations
¥ Allocation 8 (128 MiB)

Nonswn e

v allocation 1 (128 MiB)

¥ Allocation 2 (128 MiB)

¥ Allocation 3 (128 MiB)

v Allocation 6 (128 MiB)

* RenderTarget
* Allocated: 375 MiB (393775744 bytes)
® Used: 375 MiB (393775744 bytes, 100.0008080 % of allocated)
» Allocations
> Type 8
» Type 9
» Type 10

Fragmentation

e Solution: implemented a memory defragmenter
o Moves resources around to compact them into as few pools as possible
o Free pools which become empty as a result

e F12017:done at fixed points, fully defragments all allocated memory

o During loading screens
o When we're struggling to allocate memory for a new resource

e Rise of the Tomb Raider: also done periodically in the background
o Semi-open world, infrequent loading screens
o Tries to keep the amount of memory actually used versus the total size of the pools above a

threshold
o Rate-limited to avoid having too much impact on performance

§ SHORTCUT

-> Find a way through the mountain

¥ Heap 8
Size: 4896 MiB (4294967296 bytes) NS INICESRNNGS
Allocated: 1818 MiB (1986788992 bytes, 44,395891 % of heap)
Used: 1465 MiB (1536695699 bytes, 88,598758 % of allocated)
Flags:
* DEVICE_LOCAL_BIT

» Heap 1

Worees
» Type
> Type
> Type
> Type
> Type
» Type
> Type
¥ Type

Heap: 8
Domain: Device
Flags:
* DEVICE_LOCAL_BIT
Resource Types:
* Buffer
* Allocated: 418 MiB (429916168 bytes)
® Used: 482 MiB (422295435 bytes, 98.227393 % of allocated)
» Allocations
* UniformBuffer
* Allocated: & MiB (8388688 bytes)
* Used: @ MiB (781984 bytes, 9.321976 % of allocated)
» Allocations
* WritableBuffer
* Allocated: 128 MiB (135184384 bytes)
* Used: 128 MiB (126372072 bytes, 93.481265 % of allocated)
> Allocations
* Image
* Allocated: 896 MiB (939524096 bytes)
* Used: S65 MiB (593478464 bytes, 63.167136 % of allocated)
¥ Allocations
¥ Allocation 8 (128 MiB)

Nonswn e

v allocation 1 (128 MiB)

¥ Allocation 2 (128 MiB)

¥ Allocation 3 (128 MiB)

v Allocation 6 (128 MiB)

* RenderTarget
* Allocated: 375 MiB (393775744 bytes)
® Used: 375 MiB (393775744 bytes, 100.0008080 % of allocated)
» Allocations
> Type 8
» Type 9
» Type 10

§ SHORTCUT

-> Find a way through the mountain

-
e

(wyulkantemorys @

[psfrag]
Wimes ™ T]
Y Heap 8

Size: 4896 MiB (4294967296 bytes) [N

Allocated: 1554 MiB (1629964928 bytes, 37,958578 % of heap)

Used: 1478 MiB (1542037987 bytes, 94.605588 % of allocated)

Flags:

* DEVICE_LOCAL_BIT
» Heap 1

Type
Type
Type
Type
Type
Type
Type
Type
Heap: 8
Domain: Device
Flags:
* DEVICE_LOCAL_BIT
Resource Types:
* Buffer

* Allocated: 418 MiB (429916168 bytes)

® Used: 482 MiB (422295435 bytes, 98.227393 % of allocated)

» Allocations
* UniformBuffer

* Allocated: 8 MiB (8388688 bytes)

* Used: 8 MiB (781984 bytes, 9.321976 % of allocated)

» Allocations
* WritableBuffer

* Allocated: 120 MiB (126795776 bytes)

* Used: 128 MiB (126372072 bytes, 99.665837 % of allocated)

> Allocations
* Image

* Allocated: 648 MiB (671888648 bytes)

* Used: S71 MiB (598812672 bytes, 89.230842 % of allocated)

¥ Allocations

Y Allocation 8 (128 MiB)

“4vvyvvyvvyyw
Nonaswn e

v allocation 1 (128 MiB)
¥ Allocation 2 (128 MiB)
¥ Allocation 3 (128 MiB)

v Allocation 4 (128 MiB)

DU N AN (0 W
* RenderTarget

* Allocated: 375 MiB (393775744 bytes)
* Used: 375 MiB (393775744 bytes, 100.000080 % of allocated)
> Allocations

> Type 8

» Type 9

» Type 10

Descriptor Sets

e |Initial implementation rewrote descriptors per-draw every frame

o Per-frame descriptor pools

o Reuse with vkResetDescriptorPool() once frame fence completed
e Worked reasonably well on desktop

e Very costly on some mobile implementations

Descriptor Sets

New strategy: persistent descriptor sets, generated and cached as needed

Look up using a key based on the bound resources

Use (UNIFORM|STORAGE)_BUFFER_DYNAMIC descriptors
o Works well with ring buffers for frequently updated constants
o Just bind existing set with the offset of the latest data, no need to update or create from
scratch

Performance results over original implementation:
o Upto 5% improvement on desktop in Rise of the Tomb Raider benchmark
o ~30% improvement on Arm Mali in GRID Autosport benchmark

Descriptor Sets

e Descriptor pools are created as needed when existing pools are empty

e Need to keep an eye on how many sets/pools you have at a time
o They can have a VRAM cost
o No API to check, but can manually calculate when driver source available (e.g. AMD)
o Could reach ~50MB used by pools in RotTR on AMD
o Periodically free sets which haven't been used in a while — reduced to ~20MB

e Freeingindividual sets can lead to pool fragmentation
o Allocations from pools occasionally fail when this happens
o In practice hasn't been found to be much of a problem

Threading

e Vulkan gives much greater opportunity for multithreading

e Use forresource creation and during rendering

Threading - Pipeline Creation

e On Vulkan, unless you have few pipelines, it's best to create them ahead of time rather than as
needed at draw time, to avoid stuttering

e Pipelines can be created on multiple threads simultaneously

e Our previous OpenGL releases have often had loading screens to pre-warm shaders
o Can be several minutes (when driver cache is clear) for games with lots of shaders

e Rise of the Tomb Raider has a lot of pipeline states (10s of thousands)
o Semi-open world, few loading screens to be able to create them on
o Too many to pre-create at startup in a reasonable time
o Have VKkPipelineCache/driver-managed caches, but still care about the first-run experience

Threading - Pipeline Creation

e Create pipelines for current area using multiple threads during initial load
o Use (core count - 1) threads
o Pipeline creation generally scales very well the more threads you use

e Continue to create pipelines for surrounding areas on a background thread during gameplay
o Set priority lower to reduce impact on the rest of the game

e In many cases pipeline creation completes within the time taken to load everything else for an area
o Rarely end up on a loading screen waiting exclusively for pipeline creation

Threading - Rendering

e Current ports have been D3D11-style engines - mostly single-threaded API usage

e Our Vulkan layer has to do a bunch of work every draw/dispatch
o Look up/create descriptor sets
o Look up pipeline
o Resource usage tracking (for barriers)

Render
Tnmap Tmmap DrawIndexedTnstanced Unm TUn DrawIndexedTnstance

|) CndDrawInd] 13

e Would often end up bottlenecked on the rendering thread in intensive scenes

Threading - Rendering

e Solution: offload work done in the Vulkan layer to other thread(s)

e Calls into the Vulkan layer in the game rendering thread only write into a command queue

consumed by a worker thread, which does all the heavy lifting for each draw
o Game rendering logic and Vulkan layer work now execute in parallel

DrawIndexedInstanced DrawIndexedInstanced Drawlnde DrawIndexedInstanced Drawl
1 1 |

(| § CuclDraw |
Render
EE E EE I MEEEEEE B BN El DEEEEEE N | [=

Threading - Rendering

e Can also optionally offload all vkCmd* (plus a few other) calls from that thread to another
o Quite a bit of CPU time on the worker thread was being spent in the driver
o Driver work now gets executed in parallel with our work

Worker
Dra DrawIndexed Sets Set DrawIndexedInstanced Se S5e Draw DrawIndexed DrawIndexe Drawl
Command
cna | | Jcmanr) | cmabrawt] | Jcmanr] | Jemdpraw J] L] Jomd)) fcmap | || cmdbrawind] | Jcmdbrawl |} Jcmdbrawt || Jendl | |cmdbraw] cmalcmabraw]] Jomapr |] |cnd
Bender

e Enabled in RotTR for machines with 6 or more hardware threads
o Upto 10% performance improvement in some CPU limited tests
o With fewer HW threads, hurts performance slightly due to competing for CPU time with other
game threads

Threading - Rendering

B No Thread
B Worker Thread

Worker + Command Threads

CPU: Core i7-6700
GPU: AMD RX Vega 56
Preset: High
Resolution: 1080p

%]
o
L
@
=)
@
a
2
z

Soviet Installation - Vista Geothermal Valley - Village

Summary

e Vulkan has been a fairly good experience for us so far
o Desktop drivers are pretty solid
o On Linux, have several open-source drivers - a huge help both in debugging and understanding
how the driver behaves
o Tools are continually improving

e Our Vulkan support is getting better with every release
e Expect to be targeting Vulkan for Linux releases going forward

e Planning to release our first Android title (GRID Autosport) later this year

