
Porting to Vulkan 
Lessons Learned 



Who am I? 

Feral Interactive - Mac/Linux/Mobile games publisher and porter 
 
Alex Smith - Linux Developer, led development of Vulkan support 





Vulkan Releases 

● Mad Max 
○ Originally released using OpenGL in October 2016 
○ Beta Vulkan patch in March 2017 
○ Vulkanised 2017 talk “Driving Change: Porting Mad Max to Vulkan” 

 
● Warhammer 40,000: Dawn of War III 

○ Released in June 2017 
○ OpenGL by default, Vulkan as experimental option 

 
● F1 2017 

○ Released in November 2017 
○ First Vulkan-exclusive title 

 
● Rise of the Tomb Raider 

○ Released in April 2018 
○ Vulkan-exclusive 



From Beta to Production 

● First two beta releases weren’t production quality 
 

● Gave us a lot of feedback 
○ Had an email address for users to report problems to us 
○ Driver configuration issues 
○ Hardware-specific issues 
○ Big help in avoiding issues for Vulkan-exclusive releases 

 
● Many improvements made - will be detailing some of these: 

○ Memory management 
○ Descriptor sets 
○ Threading 



Memory Management 

● Biggest area which needed improvement to become production quality 
 

● Problem areas: 
○ Overcommitting VRAM 
○ Fragmentation 



Overcommitting VRAM 

● Can happen from users playing with higher graphics settings than they have enough VRAM for 
○ Don’t want to just crash in this case - it can still be made to perform reasonably well 
○ We try to allow this, within reason 

 
● Driver is not going to handle it for you! 

○ When you exhaust available space in a heap, vkAllocateMemory() will fail 
○ On Linux AMD/NV/Intel at least, may differ on other platforms 

○ Have to handle this, e.g. if allocation from a DEVICE_LOCAL heap fails, fall back to a host heap 
 

● Doing it naively can cause performance problems 



Overcommitting VRAM 

Source: https://www.phoronix.com/scan.php?page=article&item=dow3-linux-perf&num=4 

 

https://www.phoronix.com/scan.php?page=article&item=dow3-linux-perf&num=4
https://www.phoronix.com/scan.php?page=article&item=dow3-linux-perf&num=4
https://www.phoronix.com/scan.php?page=article&item=dow3-linux-perf&num=4
https://www.phoronix.com/scan.php?page=article&item=dow3-linux-perf&num=4
https://www.phoronix.com/scan.php?page=article&item=dow3-linux-perf&num=4


Overcommitting VRAM 

● DoW3 loads all of its textures and other resources on a loading screen 
 

● Render targets and GPU-writable buffers are allocated after, once it starts rendering 
 

● On 2GB GPUs, higher texture quality settings use up most of VRAM 
 

● Behaviour after a device local allocation failure was always to just fall back to a host heap 
○ Textures have already filled up the available device space 
○ Render target allocations fail, so get placed in host heap instead 
○ Say goodbye to your performance! 



Overcommitting VRAM 

● Solution: require render targets and GPU-writable buffers to be placed in VRAM 
 

● If we fail to allocate, try to make space: 
○ Defragment (discussed later) 
○ Move other resources to the host heap 

 
● Doing this brought DoW3’s Vulkan performance in line with GL when VRAM-constrained 

 
● Useful to have a way to simulate having less VRAM for testing 

○ Heap size limit: behaves as though sizes given by VkPhysicalDeviceMemoryProperties are 
smaller 

○ Early failure limit: behaves as though vkAllocateMemory() fails when less is used than the 
reported heap size 
■ In real usage this will fail early due to VRAM usage by the OS, other apps, etc. 



Fragmentation 

● We allocate large device memory pools and manage these internally 
○ Generally the recommended memory management strategy on Vulkan 
○ vk(Allocate|Free)Memory() are expensive! 

 
● Over time, these can become fragmented 

○ Due to resource streaming, etc. 
○ Resources end up spread across multiple pools with gaps in between 

 
● Memory usage becomes higher than it needs to be 

○ More pools are allocated 
○ Pools can’t be freed while they still have any resources in them 







Fragmentation 

● Solution: implemented a memory defragmenter 
○ Moves resources around to compact them into as few pools as possible 
○ Free pools which become empty as a result 

 
● F1 2017: done at fixed points, fully defragments all allocated memory 

○ During loading screens 
○ When we’re struggling to allocate memory for a new resource 

 
● Rise of the Tomb Raider: also done periodically in the background 

○ Semi-open world, infrequent loading screens 
○ Tries to keep the amount of memory actually used versus the total size of the pools above a 

threshold 
○ Rate-limited to avoid having too much impact on performance 







Descriptor Sets 

● Initial implementation rewrote descriptors per-draw every frame 
○ Per-frame descriptor pools 
○ Reuse with vkResetDescriptorPool() once frame fence completed 

 
● Worked reasonably well on desktop 

 
● Very costly on some mobile implementations 



Descriptor Sets 

● New strategy: persistent descriptor sets, generated and cached as needed 
 

● Look up using a key based on the bound resources 
 

● Use (UNIFORM|STORAGE)_BUFFER_DYNAMIC descriptors 
○ Works well with ring buffers for frequently updated constants 
○ Just bind existing set with the offset of the latest data, no need to update or create from 

scratch 
 

● Performance results over original implementation: 
○ Up to 5% improvement on desktop in Rise of the Tomb Raider benchmark 
○ ~30% improvement on Arm Mali in GRID Autosport benchmark 



Descriptor Sets 

● Descriptor pools are created as needed when existing pools are empty 
 

● Need to keep an eye on how many sets/pools you have at a time 
○ They can have a VRAM cost 
○ No API to check, but can manually calculate when driver source available (e.g. AMD) 
○ Could reach ~50MB used by pools in RotTR on AMD 
○ Periodically free sets which haven’t been used in a while – reduced to ~20MB 

 
● Freeing individual sets can lead to pool fragmentation 

○ Allocations from pools occasionally fail when this happens 
○ In practice hasn’t been found to be much of a problem 



Threading 

● Vulkan gives much greater opportunity for multithreading 
 

● Use for resource creation and during rendering 



Threading - Pipeline Creation 

● On Vulkan, unless you have few pipelines, it’s best to create them ahead of time rather than as 
needed at draw time, to avoid stuttering 
 

● Pipelines can be created on multiple threads simultaneously 
 

● Our previous OpenGL releases have often had loading screens to pre-warm shaders 
○ Can be several minutes (when driver cache is clear) for games with lots of shaders 

 
● Rise of the Tomb Raider has a lot of pipeline states (10s of thousands) 

○ Semi-open world, few loading screens to be able to create them on 
○ Too many to pre-create at startup in a reasonable time 
○ Have VkPipelineCache/driver-managed caches, but still care about the first-run experience 



Threading - Pipeline Creation 

● Create pipelines for current area using multiple threads during initial load 
○ Use (core count - 1) threads 
○ Pipeline creation generally scales very well the more threads you use 

 
● Continue to create pipelines for surrounding areas on a background thread during gameplay 

○ Set priority lower to reduce impact on the rest of the game 
 

● In many cases pipeline creation completes within the time taken to load everything else for an area 
○ Rarely end up on a loading screen waiting exclusively for pipeline creation 

 



Threading - Rendering 

● Current ports have been D3D11-style engines - mostly single-threaded API usage 
 

● Our Vulkan layer has to do a bunch of work every draw/dispatch 
○ Look up/create descriptor sets 
○ Look up pipeline 
○ Resource usage tracking (for barriers) 

 
 
 
 

● Would often end up bottlenecked on the rendering thread in intensive scenes 



Threading - Rendering 

● Solution: offload work done in the Vulkan layer to other thread(s) 
 

● Calls into the Vulkan layer in the game rendering thread only write into a command queue 
consumed by a worker thread, which does all the heavy lifting for each draw 
○ Game rendering logic and Vulkan layer work now execute in parallel 

 



Threading - Rendering 

● Can also optionally offload all vkCmd* (plus a few other) calls from that thread to another 
○ Quite a bit of CPU time on the worker thread was being spent in the driver 
○ Driver work now gets executed in parallel with our work 

 
 
 
 
 
 

● Enabled in RotTR for machines with 6 or more hardware threads 
○ Up to 10% performance improvement in some CPU limited tests 
○ With fewer HW threads, hurts performance slightly due to competing for CPU time with other 

game threads 



Threading - Rendering 

CPU: Core i7-6700 
GPU: AMD RX Vega 56 
Preset: High 
Resolution: 1080p 

46.7 

69.7 

76.0 

40.4 

62.3 

66.5 



Summary 

● Vulkan has been a fairly good experience for us so far 
○ Desktop drivers are pretty solid 
○ On Linux, have several open-source drivers - a huge help both in debugging and understanding 

how the driver behaves 
○ Tools are continually improving 

 
● Our Vulkan support is getting better with every release 

 
● Expect to be targeting Vulkan for Linux releases going forward 

 
● Planning to release our first Android title (GRID Autosport) later this year 




